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The problem of order-preserving matching has gained attention lately. The text and the 
pattern consist of numbers. The task is to find all the substrings in the text which have 
the same length and relative order as the pattern. The problem has applications in analysis 
of time series. We present a new sublinear solution based on filtration. Any algorithm 
for exact string matching can be used as a filtering method. If the filtration algorithm is 
sublinear, the total method is sublinear on average. We show by practical experiments that 
the new solution is more efficient than earlier algorithms.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

String matching [1] is a widely known problem in 
Computer Science. Given a text T of length n and a pat-
tern P of length m, both being strings over a finite alpha-
bet �, the task of string matching is to find all the occur-
rences of P in T . The problem of order-preserving match-
ing [2–6] has gained attention lately. It considers strings 
of numbers. The task is to find all the substrings (also 
called factors) u in T which have the same relative order 
as P , and |u| = |P |. Suppose P = (10, 22, 15, 30, 20, 18, 27)

and T = (22, 85, 79, 24, 42, 27, 62, 40, 32, 47, 69, 55, 25), 
then the relative order of P matches the substring u =
(24, 42, 27, 62, 40, 32, 47) of T , see Fig. 1.

Several online [7,5,3,4] and one offline solution [2]
have been proposed for order-preserving matching. Kubica 
et al. [4] and Kim et al. [3] presented solutions based on 
the Knuth–Morris–Pratt algorithm (KMP) [8]. Later, Cho 
et al. [5,6] gave a sublinear solution based on the bad 
character heuristic of the Boyer–Moore algorithm [9]. Al-
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most at the same time, Belazzougui et al. [7] derived an 
optimal sublinear solution. We will present a new practi-
cal solution based on filtration. We form a modified pat-
tern and use an algorithm for exact string matching as a 
filtration method. Our approach is simpler and in prac-
tice more efficient than earlier solutions. We transform 
the original pattern P into a binary string P ′ express-
ing increases (1), equalities (0), and decreases (0) be-
tween subsequent pattern positions. Then we search for 
P ′ in the analogously transformed text T ′ . For example, 
P ′ = 101001 corresponds to P = (10, 22, 15, 30, 20, 18, 27)

and T ′ = 100101001100 to T above. Each occurrence is a 
match candidate which is verified following the numerical 
order of the positions of the original pattern P . Note that 
in this approach any algorithm for exact string matching 
can be used as a filtration method. If the filtration algo-
rithm is sublinear and the text is transformed on line, the 
total method is sublinear on average.

We made experiments with two sublinear string match-
ing algorithms and two linear string matching algorithms 
as the filtering method. Our approach with sublinear fil-
ters was considerably faster than the algorithm by Cho 
et al. [5], which is the first sublinear solution of the prob-

lem.
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Fig. 1. Example of order-preserving matching.

The paper is organized as follows. Section 2 describes 
the previous solutions for order-preserving matching, Sec-
tion 3 presents our solution based on filtration, Section 4
analyses the new approach, Section 5 presents and dis-
cusses the results of practical experiments, and Section 6
concludes the article.

2. Previous solutions

In the first KMP approach presented by Kubica et al. [4], 
the fail function in the KMP algorithm is modified to com-
pute the order-borders table. This can be achieved in linear 
time. The KMP algorithm is mutated such that it deter-
mines if the text contains substring with the same relative 
order as that of the pattern using the order-borders table. 
This computation can be done in linear time. Hence, the 
total time complexity of the method is linear.

The second KMP approach by Kim et al. [3] is based 
on the prefix representation. The prefix representation is 
based on finding the rank of each number in the pre-
fix. The time complexity of the method is O (n log m). This 
approach is further optimized using the nearest neighbor 
representation to overcome the overhead involved in com-
puting the rank function. The time complexity of the im-
proved version is O (n + m logm).

The BMH approach by Cho et al. [5] is based on the bad 
character rule applied to q-grams, i.e. strings of q charac-
ters. A q-gram is treated as a single character in order to 
make shifts longer. In this way, a large amount of text can 
be skipped for long patterns, and the algorithm is sublin-
ear on average. The standard version works in O (mn) in 
the worst case. Later, Cho et al. [6] introduced a linear 
version, which has been combined with KMP in order to 
guarantee linear behavior in the worst case.

3. Our solution

In Section 1 we gave an informal description of order-
preserving matching. Let us define the problem formally.

Problem definition Two strings u = u1u2 · · · um and v =
v1 v2 · · · vm of the same length over � are called order-
isomorphic [3,4], written u ≈ v , if
ui ≤ u j ⇔ vi ≤ v j for 1 ≤ i, j ≤ m.
In the order-preserving pattern matching problem, the task is 
to find all the substrings of T = t1t2 · · · tn which are order-
isomorphic with P = p1 p2 · · · pm .

Our solution for order-preserving matching consists of 
two phases: filtration and verification. First the text is 
transformed to a bit string which is filtered with some 
exact string matching algorithm. In the second phase the 
match candidates are verified using a checking routine.

Filtration For filtration, the consecutive numbers in the 
pattern P = p1 p2 · · · pm are compared pairwise in the pre-
processing phase and the result is encoded as a modified 
pattern P ′ = b1b2 · · ·bm−1 of binary numbers: bi is 1 if 
pi < pi+1 holds, otherwise bi is 0. In the search phase, 
some algorithm for exact string matching (let us call it A) 
is applied to filter out the text. When Algorithm A reads an 
alignment window of the original text, the text is encoded 
incrementally online in the same way as the pattern. Al-
gorithm A is run as if the whole text would have been 
encoded. Because Algorithm A may recognize an occur-
rence of P ′ which does not correspond to an actual match 
of P in T , each occurrence of P ′ is only a match candi-
date which should be verified. It is clear that this filtration 
method cannot skip any occurrence of P in T .

Verification During preprocessing the pattern, the num-
bers of the pattern P = p1 p2 · · · pm are sorted. The result 
is an auxiliary table r: pr[i] ≤ pr[ j] holds for each pair i < j
and pr[1] is the smallest number in P . In addition, we 
need a binary vector E representing the equalities: E[i] = 1
denotes that pr[i] = pr[i+1] holds. The match candidates 
found by Algorithm A are traversed in accordance with the 
table r. If the candidate starts from t j in T , the first com-
parison is done between t j−1+r[1] and t j−1+r[2] . There is a 
mismatch when

t j−1+r[i] > t j−1+r[i+1] or

(t j−1+r[i] = t j−1+r[i+1] and E[i] = 0) or

(t j−1+r[i] < t j−1+r[i+1] and E[i] = 1)

is satisfied. The candidate is discarded when a mismatch 
is encountered. Verification is efficient because sorting is 
done only once during preprocessing.

Remark We use binary numbers in encoding. We also 
tried encoding of three numbers 0, 1, and 2 correspond-
ing to ‘<’, ‘=’, and ‘>’, but the binary approach was faster 
in practice, because testing of one condition is faster than 
testing of two conditions. Also the frequency of nearby 
equalities is low in real data.

4. Analysis

We will prove that our approach is sublinear in the 
average case, if the filtration algorithm is sublinear. Sub-
linearity means that on average all the characters in the 
text are not examined.

Let us assume that the numbers in P and T are inte-
gers and they are statistically independent of each other 

and the distribution of numbers is discrete uniform. Let 
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P ′ and T ′ be the transformed pattern and text. Let c be 
the count of the integer range (i.e. the alphabet size). The 
probability of one in a position of P ′ or T ′ (as a result of 
a comparison) is p = (c2/2 − c/2)/c2 = (c − 1)/2c, because 
there are c2 integer pairs and c equalities. So the probabil-
ity of a character match q is

p2 + (1 − p)2 = 2p(p − 1) + 1 = 1 − c − 1

c
· c + 1

2c

= 1 − c2 − 1

2c2
= 1

2
+ 1

2c2
.

Because adjacent positions in P ′ = b1b2 · · ·bm−1 and in T ′
are not independent, let us consider matching of a relaxed 
pattern P ′′ = b1$b3$b5 · · ·$bs , which contains every other 
character of P ′ and where $ matches both 0 and 1 and s is 
2�m/2� − 1. The probability of a match of P ′′ at a certain 
position of T ′ is smaller than q(m−1)/2, which approaches 
to zero, when m grows. This is true even for c = 2. The 
probability of a match of P ′ (i.e. a match candidate of P ) is 
smaller than the probability of a match of P ′′ . This means 
that the verification time approaches zero when m grows, 
and the filtration time dominates. If the filtration method 
is sublinear, the total algorithm is sublinear.

The preprocessing phase requires O (m log m) time due 
to sorting of the pattern positions. The space requirement 
is O (m).

In the worst case, the total algorithm requires O (nm)

time if, for example, P ′ is 1m−1 and T ′ is 1n−1. If the filtra-
tion method is linear in the worst case, the total algorithm 
can be modified to work in linear time by combining a lin-
ear solution [4,3] L with it. When the distance of starting 
positions of subsequent match candidates is less than m/2, 
next 2m positions are processed with L.

5. Experiments

We tested four string matching algorithms as filtra-
tion methods for order-preserving matching. Two of them, 
SBNDM2 and SBNDM4 [10] are based on the Backward 
Nondeterministic DAWG Matching (BNDM) algorithm [1]. 
In BNDM, each alignment window is processed from right 
to left like in the Boyer–Moore algorithm [9] by simulating 
the nondeterministic automaton of the reversed pattern 
with bitparallelism. SBNDMq starts the processing of each 
alignment window by reading a q-gram. The third algo-
rithm is Fast Shift-Or (FSO) [11]. We utilized a version of 
FSO coded by B. Ďurian [10]. FSO was selected because it is 
fast on short binary patterns [10]. The fourth algorithm is 
the KMP algorithm [8]; together with verification it was 
supposed to approximate the two earlier methods [3,4]
based on KMP. Of the algorithms, SBNDM2 and SBNDM4 
are sublinear, whereas FSO and KMP are linear.

The tests were run on Intel 2.70 GHz i7 processor with 
16 GB of memory running Ubuntu 12.10. All the algo-
rithms were implemented in C in the 64-bit mode and 
run in the testing framework of Hume and Sunday [12]. 
Our solution based on filtration was compared with the 
BMH approach by Cho et al. [5] (the authors generously let 
us use their implementation). Because the BMH approach 

was clearly faster than the KMP-based algorithm [3] and 
Fig. 2. Execution times of algorithms for the Dow Jones data.

slightly faster than the linear version of the BMH approach 
in the tests [6], we tested only the first mentioned algo-
rithm.

For testing we used three texts: a random text and two 
real texts, which were time series of the Dow Jones in-
dex and Helsinki temperatures. The random data contains 
1,000,000 random integers between 0 and 230. The Dow 
Jones data contains 15,248 integers pertaining to the daily 
values of the stock index in the years 1950–2011 and the 
Helsinki temperature data contains 6818 integers referring 
to the daily mean temperatures in Fahrenheit (multiplied 
by ten) in Helsinki in the years 1995–2005. From each text 
we picked randomly patterns of length 5, 8, 10, 15, 20, 30, 
and 50. Each set contains 1000 patterns for the random 
text and 200 patterns for the real texts. Table 1 shows the 
average execution times per pattern of all the algorithms. 
The unit is 10 milliseconds for real data and one second for 
random data. In addition, a graph on times for the Dow 
Jones data is shown in Fig. 2. The real texts were tested 
with 180 repeated runs and the random text was tested 
with 60 repeated runs. In Table 1, S2OPM represents the 
algorithm based on SBNDM2 filtration, S4OPM represents 
the algorithm based on SBNDM4 filtration, BMOPM-q rep-
resents the BMH approach [5] for q = 3, 4, 5, KOPM repre-
sents the algorithm based on KMP filtration and FSO-OPM 
represents the algorithm based on Fast Shift-Or.

From Table 1, it can be seen that in case of real data, 
S4OPM is a clear winner for most tested values of m, and 
FSO-OPM is the fastest for m = 5. With all the three data 
sets, S2OPM is mostly slower than S4OPM but its execu-
tion time approaches that of S4OPM as the value of m
increases. For m = 50, the execution times of S2OPM and 
S4OPM are almost equal. Relatively, S2OPM and S4OPM 
perform better on the real data than on the random data. 
In the case of Helsinki daily temperatures, the execution 
times of S2OPM and S4OPM are comparable. In the case 
of random data, S2OPM and S4OPM are the best for m = 5
and FSO-OPM is the best for m = 8, 10.

6. Concluding remarks

We introduced a new practical solution based on fil-
tration for order-preserving matching. Any exact string 
matching algorithm can be used as the filtration algo-

rithm. In this paper, we utilized SBNDM2, SBNDM4, FSO, 
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Table 1
Execution times of algorithms (random: in seconds, others: in 10 milliseconds). The best time for each pattern set has been boxed.

Data Algorithm 5 8 10 15 20 30 50

DOW KOPM 2.02 1.94 1.94 2.00 1.94 1.96 1.95
BMOPM-3 1.64 1.06 0.91 0.81 0.79 0.76 0.78
BMOPM-4 2.16 0.96 0.72 0.50 0.41 0.34 0.31
BMOPM-5 4.34 1.13 0.78 0.47 0.35 0.27 0.22
FSO-OPM 1.01 0.48 0.46 0.46 0.44 0.46 0.46
S2OPM 1.05 0.58 0.41 0.28 0.16 0.09 0.06
S4OPM 1.03 0.31 0.20 0.19 0.10 0.08 0.06

Hel temp KOPM 0.85 0.81 0.75 0.77 0.76 0.76 0.76
BMOPM-3 0.70 0.46 0.46 0.40 0.39 0.39 0.44
BMOPM-4 0.91 0.40 0.42 0.28 0.24 0.21 0.21
BMOPM-5 1.87 0.49 0.52 0.31 0.23 0.18 0.17
FSO-OPM 0.34 0.21 0.22 0.22 0.21 0.21 0.21
S2OPM 0.40 0.18 0.13 0.08 0.06 0.03 0.03
S4OPM 0.43 0.12 0.09 0.06 0.04 0.04 0.03

Random KOPM 6.90 4.91 6.66 6.06 4.94 6.72 6.70
BMOPM-3 8.08 4.01 4.69 4.17 4.08 4.10 4.07
BMOPM-4 11.48 3.89 3.47 1.77 1.39 1.47 1.18
BMOPM-5 22.83 5.97 4.70 2.67 1.88 1.22 0.79
FSO-OPM 5.36 1.93 1.64 1.68 1.65 1.69 1.68
S2OPM 3.90 2.47 1.89 1.17 1.26 0.79 0.35
S4OPM 3.90 2.01 1.76 1.15 0.85 0.57 0.35
and KMP as the filtration method of our solution. The re-
sults of our practical experiments prove that the solutions 
based on SBNDM2 and SBNDM4 are faster than the ear-
lier BMOPM algorithm. Moreover, the solution based on 
FSO is still faster for certain short pattern lengths. Re-
search on filters and encodings for order-preserving match-
ing is continuing. After submitting this paper, Chhabra 
et al. [13] improved filtering time with the SIMD tech-
nology. Chhabra et al. [14] applied the same encoding to 
approximate order-preserving matching. Cantone et al. [15]
developed a more sophisticated encoding with a faster fil-
ter.
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